Machine learning study: from the toxicity studies to tetrahydrocannabinol effects on Parkinson's disease


YÜCEL M. A., Ozcelik İ., ALGÜL Ö.

Future medicinal chemistry, cilt.15, sa.4, ss.365-377, 2023 (SCI-Expanded) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 15 Sayı: 4
  • Basım Tarihi: 2023
  • Doi Numarası: 10.4155/fmc-2022-0181
  • Dergi Adı: Future medicinal chemistry
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Chemical Abstracts Core, EMBASE, MEDLINE
  • Sayfa Sayıları: ss.365-377
  • Anahtar Kelimeler: AHR, dopamine receptor, machine learning, Parkinson's disease, tetrahydrocannabinol
  • Erzincan Binali Yıldırım Üniversitesi Adresli: Evet

Özet

Aim: Investigating molecules having toxicity and chemical similarity to find hit molecules. Methods: The machine learning (ML) model was developed to predict the arylhydrocarbon receptor activity of anti-Parkinson's and US FDA-approved drugs. The ML algorithm was a support vector machine, and the dataset was Tox21. Results: The ML model predicted apomorphine in anti-Parkinson's drugs and 73 molecules in FDA-approved drugs as active. The authors were curious if there is any molecule like apomorphine in these 73 molecules. A fingerprint similarity analysis of these molecules was conducted and found tetrahydrocannabinol (THC). Molecular docking studies of THC for dopamine receptor 1 (affinity = -8.2 kcal/mol) were performed. Conclusion: THC may affect dopamine receptors directly and could be useful for Parkinson's disease. Arylhydrocarbon receptor has tissue-specific roles in xenobiotic metabolism, the immune system, inflammation and cancer. Studies showed that carbidopa and dopamine are agonists of arylhydrocarbon receptor. Parkinson's disease is a neurodegenerative disease and depends on the dopamine system's dysregulation. There is a strong relationship between the dopamine system and cannabinoids. In this study, the possibility of the agonist effect of tetrahydrocannabinol on dopamine receptors was investigated by a machine learning method.