Combustion and emission characteristics of premixed biogas mixtures: An experimental study


Sivri İ., Yılmaz H., Çam Ö., Yılmaz İ.

International Journal of Hydrogen Energy, vol.47, no.24, pp.12377-12392, 2022 (SCI-Expanded) identifier identifier

  • Publication Type: Article / Article
  • Volume: 47 Issue: 24
  • Publication Date: 2022
  • Doi Number: 10.1016/j.ijhydene.2021.08.119
  • Journal Name: International Journal of Hydrogen Energy
  • Journal Indexes: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, PASCAL, Artic & Antarctic Regions, Chimica, Communication Abstracts, Compendex, Environment Index, INSPEC
  • Page Numbers: pp.12377-12392
  • Keywords: Renewable energy, Biogas, Hydrogen, Fuel composition, Swirl number, Basic combustion characteristics
  • Erzincan Binali Yildirim University Affiliated: Yes

Abstract

© 2021 Hydrogen Energy Publications LLCIn this study, effects of fuel composition, swirl number and hydrogen addition on combustion and emission characteristics of various biogas mixtures were experimentally investigated. To this end, a laboratory scale combustor and a swirl stabilized premixed burner were designed and manufactured. Later on, this combusting apparatus was equipped with flow, control, safety and measurement tools, hence entire test system was constituted. Combustion and emission characteristics of tested biogas mixtures were determined by measuring temperature and species (CO2, CO, O2 and NO) distributions throughout the combustion chamber. Additionally, flame structures of tested biogas mixtures were evaluated by examining flame luminosity, visible flame length and flame thickness from instantaneous flame images. Results of this study showed that both radial and axial temperature distribution variations of tested biogas mixtures differently alter with hydrogen addition based on the gas composition. Although flame temperature increases with swirl number at burner outlet, it presents a non-monotonous dependence on swirl number outside the flame region because of the modified flow characteristics. This is also the case for emissions of CO2.