Agriculture (Switzerland), cilt.10, sa.11, ss.1-16, 2020 (SCI-Expanded)
© 2020 by the authors. Licensee MDPI, Basel, Switzerland.Salinity is an edaphic stress that dramatically restricts worldwide crop production. Nanomaterials and plant growth-promoting bacteria (PGPB) are currently used to alleviate the negative effects of various stresses on plant growth and development. This study investigates the protective effects of different levels of zinc oxide nanoparticles (ZnO-NPs) (0, 20, and 40 mg L−1) and PGPBs (no bacteria, Bacillus subtilis, Lactobacillus casei, Bacillus pumilus) on DNA damage and cytosine methylation changes in the tomato (Solanum lycopersicum L. ‘Linda’) seedlings under salinity stress (250 mM NaCl). Coupled Restriction Enzyme Digestion-Random Amplification (CRED-RA) and Randomly Amplified Polymorphic DNA (RAPD) approaches were used to analyze changes in cytosine methylation and to determine how genotoxic effects influence genomic stability. Salinity stress increased the polymorphism rate assessed by RAPD, while PGPB and ZnO-NPs reduced the adverse effects of salinity stress. Genomic template stability was increased by the PGPBs and ZnO-NPs application; this increase was significant when Lactobacillus casei and 40 mg L−1 of ZnO-NPs were used.A decreased level of DNA methylation was observed in all treatments. Taken together, the use of PGPB and ZnO-NPs had a general positive effect under salinity stress reducing genetic impairment in tomato seedlings.