Search for heavy resonances decaying to Z (ν ν ¯)V (q q ¯ ′) in proton-proton collisions at s =13 TeV


Creative Commons License

Tumasyan A., Adam W., Andrejkovic J., Bergauer T., Chatterjee S., Dragicevic M., ...More

Physical Review D, vol.106, no.1, 2022 (SCI-Expanded) identifier identifier

  • Publication Type: Article / Article
  • Volume: 106 Issue: 1
  • Publication Date: 2022
  • Doi Number: 10.1103/physrevd.106.012004
  • Journal Name: Physical Review D
  • Journal Indexes: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, Aerospace Database, Chemical Abstracts Core, INSPEC, zbMATH
  • Erzincan Binali Yildirim University Affiliated: Yes

Abstract

© 2022 CERN. A search is presented for heavy bosons decaying to Z(νν¯)V(qq¯′), where V can be a W or a Z boson. A sample of proton-proton collision data at s=13 TeV was collected by the CMS experiment during 2016-2018. The data correspond to an integrated luminosity of 137 fb-1. The event categorization is based on the presence of high-momentum jets in the forward region to identify production through weak vector boson fusion. Additional categorization uses jet substructure techniques and the presence of large missing transverse momentum to identify W and Z bosons decaying to quarks and neutrinos, respectively. The dominant standard model backgrounds are estimated using data taken from control regions. The results are interpreted in terms of radion, W′ boson, and graviton models, under the assumption that these bosons are produced via gluon-gluon fusion, Drell-Yan, or weak vector boson fusion processes. No evidence is found for physics beyond the standard model. Upper limits are set at 95% confidence level on various types of hypothetical new bosons. Observed (expected) exclusion limits on the masses of these bosons range from 1.2 to 4.0 (1.1 to 3.7) TeV.