Atıf İçin Kopyala
Yapman Ö., Amiraliyev G.
INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, cilt.97, sa.6, ss.1293-1302, 2020 (SCI-Expanded)
-
Yayın Türü:
Makale / Tam Makale
-
Cilt numarası:
97
Sayı:
6
-
Basım Tarihi:
2020
-
Doi Numarası:
10.1080/00207160.2019.1614565
-
Dergi Adı:
INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS
-
Derginin Tarandığı İndeksler:
Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, Aerospace Database, Applied Science & Technology Source, Communication Abstracts, Compendex, Computer & Applied Sciences, INSPEC, Metadex, zbMATH, Civil Engineering Abstracts
-
Sayfa Sayıları:
ss.1293-1302
-
Anahtar Kelimeler:
Volterra integro-differential equation, singular perturbation, finite difference, uniform convergence, DIFFERENCE SCHEME
-
Erzincan Binali Yıldırım Üniversitesi Adresli:
Evet
Özet
In this paper, we deal with the second-order accurate homogeneous (non-hybrid) type difference scheme for solving a singularly perturbed first-order Volterra integro-differential equation. It is shown that the method displays uniform convergence of on a special non-uniform mesh, where N is the mesh parameter. Numerical results are included to verify the theoretical estimates.