A novel second-order fitted computational method for a singularly perturbed Volterra integro-differential equation


Yapman Ö., Amiraliyev G.

INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, cilt.97, sa.6, ss.1293-1302, 2020 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 97 Sayı: 6
  • Basım Tarihi: 2020
  • Doi Numarası: 10.1080/00207160.2019.1614565
  • Dergi Adı: INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, Aerospace Database, Applied Science & Technology Source, Communication Abstracts, Compendex, Computer & Applied Sciences, INSPEC, Metadex, zbMATH, Civil Engineering Abstracts
  • Sayfa Sayıları: ss.1293-1302
  • Anahtar Kelimeler: Volterra integro-differential equation, singular perturbation, finite difference, uniform convergence, DIFFERENCE SCHEME
  • Erzincan Binali Yıldırım Üniversitesi Adresli: Evet

Özet

In this paper, we deal with the second-order accurate homogeneous (non-hybrid) type difference scheme for solving a singularly perturbed first-order Volterra integro-differential equation. It is shown that the method displays uniform convergence of on a special non-uniform mesh, where N is the mesh parameter. Numerical results are included to verify the theoretical estimates.