Synthesis and Antifungal Evaluation of 1-Aryl-2-dimethylaminomethyl-2-propen-1-one Hydrochlorides


Creative Commons License

METE E., GÜL H. İ. , Bilginer S., Algul Ö., Topaloglu M. E. , GÜLLÜCE M., ...More

MOLECULES, vol.16, no.6, pp.4660-4671, 2011 (SCI-Expanded) identifier identifier identifier

  • Publication Type: Article / Article
  • Volume: 16 Issue: 6
  • Publication Date: 2011
  • Doi Number: 10.3390/molecules16064660
  • Journal Name: MOLECULES
  • Journal Indexes: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Page Numbers: pp.4660-4671
  • Keywords: acetophenone, antifungal activity, conventional heating, mannich bases, synthesis, microwave irradiation, MONO-MANNICH BASES, CORRESPONDING AZINE DERIVATIVES, CELLULAR GLUTATHIONE, 1-ARYL-3-PHENETHYLAMINO-1-PROPANONE HYDROCHLORIDES, ANTIINFLAMMATORY ACTIVITY, JURKAT CELLS, CYTOTOXICITY, BIS, PIPERIDINOLS, ACETOPHENONES
  • Erzincan Binali Yildirim University Affiliated: No

Abstract

The development of resistance to current antifungal therapeutics drives the search for new effective agents. The fact that several acetophenone-derived Mannich bases had shown remarkable antifungal activities in our previous studies led us to design and synthesize some acetophenone-derived Mannich bases, 1-8 and 2-acetylthiophene-derived Mannich base 9, 1-aryl-2-dimethylaminomethyl-2-propen-1-one hydrochloride, to evaluate their antifungal activities. The designed chemical structures have a, alpha,beta-unsaturated ketone moieties, which are responsible for the bioactivities of the Mannich bases. The aryl part was C6H5 (1); 4-CH3C6H4 (2); 4-CH3OC6H4 (3); 4-ClC6H4 (4); 4-FC6H4 (5); 4-BrC6H4 (6); 4-HOC6H4 (7); 4-NO2C6H4 (8); and C4H3S(2-yl) (9). In this study the designed compounds were synthesized by the conventional heating method and also by the microwave irradiation method to compare these methods in terms of reaction times and yields to find an optimum synthetic method, which can be applied for the synthesis of Mannich bases in further studies. Since there are limited number of studies reporting the synthesis of Mannich bases by microwave irradiation, this study may also contribute to the general literature on Mannich bases. Compound 7 was reported for the first time. Antifungal activities of all compounds and synthesis of the compounds by microwave irradiation were also reported for the first time by this study. Fungi (15 species) were used for antifungal activity test. Amphotericin B was tested as an antifungal reference compound. In conclusion, compounds 1-6, and 9, which had more potent (2-16 times) antifungal activity than the reference compound amphotericin B against some fungi, can be model compounds for further studies to develop new antifungal agents. In addition, microwave irradiation can be considered to reduce reaction period, while the conventional method can still be considered to obtain compounds with higher reaction yields in the synthesis of new Mannich bases.