Numerical solution of a singularly perturbed Fredholm integro differential equation with Robin boundary condition


Durmaz M. E., Amiraliyev G. M., KUDU M.

Turkish Journal of Mathematics, cilt.46, sa.1, ss.207-224, 2022 (SCI-Expanded) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 46 Sayı: 1
  • Basım Tarihi: 2022
  • Doi Numarası: 10.3906/mat-2109-11
  • Dergi Adı: Turkish Journal of Mathematics
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, MathSciNet, zbMATH, TR DİZİN (ULAKBİM)
  • Sayfa Sayıları: ss.207-224
  • Anahtar Kelimeler: Fredholm integro differential equation, singular perturbation, finite difference methods, Shishkin mesh, uniform convergence
  • Erzincan Binali Yıldırım Üniversitesi Adresli: Evet

Özet

© TÜBİTAKIn this paper, we deal with singularly perturbed Fredholm integro differential equation (SPFIDE) with mixed boundary conditions. By using interpolating quadrature rules and exponential basis function, fitted second order difference scheme has been constructed on a Shishkin mesh. The stability and convergence of the difference scheme have been analyzed in the discrete maximum norm. Some numerical examples have been solved and numerical outcomes are obtained.