The preventive effect of taxifolin on acrylamide-induced heart damage in rats O efeito preventivo da taxifolina em danos cardíacos induzidos por acrilamida em ratos


Creative Commons License

COŞGUN M. S., COŞKUN R., Celik A. I.

Revista de Nutricao, cilt.35, 2022 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 35
  • Basım Tarihi: 2022
  • Doi Numarası: 10.1590/1678-9865202235e210079
  • Dergi Adı: Revista de Nutricao
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, CAB Abstracts, Food Science & Technology Abstracts, Veterinary Science Database, Directory of Open Access Journals
  • Anahtar Kelimeler: Acrylamide, Oxidative heart damage, Rat, Taxofilin
  • Erzincan Binali Yıldırım Üniversitesi Adresli: Evet

Özet

© 2022. Revista de Nutricao. All Rights Reserved.Objective Acrylamide is a toxic compound widely used in industrial sectors. Acrylamide causes reactive oxygen species formation and the subsequent lipid peroxidation reaction, which plays an important role in the pathogenesis of oxidative damage. Taxifolin is a flavonoid with antioxidant properties that inhibit reactive oxygen species formation. In this study, we aimed to investigate the preventive effect of taxifolin on acrylamide-induced oxidative heart damage. Methods The rats were divided into three groups: Acrylamide, Acrylamide+Taxifolin, and Healthy group. Water and food intake and body weight alterations were recorded daily. Malondialdehyde, total glutathione, nuclear factor kappa-B, total oxidant status, and total antioxidant status levels were analyzed from the heart tissue. Troponin-I levels, the parameter known as a cardiac biomarker, were analyzed from the blood sample. The cardiac histopathologic examination was also performed. Results In the Acrylamide group animals, the malondialdehyde, nuclear factor kappa-B, total oxidant status, and troponin-I levels were significantly higher compared to the ones of Acrylamide+Taxifolin and Healthy groups. The levels of total glutathione and total antioxidant status were significantly lower compared to Acrylamide+Taxifolin and Healthy groups’. Additionally, in the Acrylamide group, body weight gain, food and water intake, significantly declined compared to the Acrylamide+Taxifolin and Healthy groups. However, in the Acrylamide+Taxifolin group, taxifolin supplementation brought these values close to Healthy group ones. Furthermore, taxifolin treatment ameliorated structural myocardial damage signs induced by acrylamide. Conclusion Acrylamide exposure significantly induced oxidative damage to rat heart tissue. Taxifolin was able to improve the toxic consequences of acrylamide biochemically and histopathologically, possibly due to its antioxidant properties.