A novel hybrid system for automatic detection of fish quality from eye and gill color characteristics using transfer learning technique.


Creative Commons License

Akgül İ., Kaya V., Zencir Tanır Ö.

PloS one, cilt.18, sa.4, 2023 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 18 Sayı: 4
  • Basım Tarihi: 2023
  • Doi Numarası: 10.1371/journal.pone.0284804
  • Dergi Adı: PloS one
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, Agricultural & Environmental Science Database, Animal Behavior Abstracts, Aquatic Science & Fisheries Abstracts (ASFA), BIOSIS, Biotechnology Research Abstracts, Chemical Abstracts Core, EMBASE, Food Science & Technology Abstracts, Index Islamicus, Linguistic Bibliography, MEDLINE, Pollution Abstracts, Psycinfo, zbMATH, Directory of Open Access Journals
  • Erzincan Binali Yıldırım Üniversitesi Adresli: Evet

Özet

Fish remains popular among the body’s most essential nutrients, as it contains protein and polyunsaturated fatty acids. It is extremely important to choose the fish consumption according to the season and the freshness of the fish to be purchased. It is very difficult to distinguish between non-fresh fish and fresh fish mixed in the fish stalls. In addition to traditional methods used to determine meat freshness, significant success has been achieved in studies on fresh fish detection with artificial intelligence techniques. In this study, two different types of fish (anchovy and horse mackerel) used to determine fish freshness with convolutional neural networks, one of the artificial intelligence techniques. The images of fresh fish were taken, images of non-fresh fish were taken and two new datasets (Dataset1: Anchovy, Dataset2: Horse mackerel) were created. A novel hybrid model structure has been proposed to determine fish freshness using fish eye and gill regions on these two datasets. In the proposed model, Yolo-v5 and Inception ResNet-v2 and Xception model structures are used through transfer learning. Whether the fish is fresh in both of the Yolo-v5 + Inception- ResNet-v2 (Dataset1: 97.67%, Dataset2: 96.0%) and Yolo-v5 + Xception (Dataset1: 88.00%, Dataset2: 94.67%) hybrid models created using these model structures has been successfully detected. Thanks to the model we have proposed, it will make an important contribution to the studies that will be conducted in the freshness studies of fish using different storage days and the estimation of fish size.