Atıf İçin Kopyala
YAPMAN Ö., AMİRALİ G.
Chaos, Solitons and Fractals, cilt.150, 2021 (SCI-Expanded)
-
Yayın Türü:
Makale / Tam Makale
-
Cilt numarası:
150
-
Basım Tarihi:
2021
-
Doi Numarası:
10.1016/j.chaos.2021.111100
-
Dergi Adı:
Chaos, Solitons and Fractals
-
Derginin Tarandığı İndeksler:
Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, INSPEC, zbMATH
-
Anahtar Kelimeler:
Volterra delay-integro-differential equation, Singular perturbation, Finite difference method, Uniform convergence, LINEAR MULTISTEP METHODS, INTEGRODIFFERENTIAL EQUATIONS, STABILITY ANALYSIS, BEHAVIOR
-
Erzincan Binali Yıldırım Üniversitesi Adresli:
Evet
Özet
© 2021 Elsevier LtdA linear Volterra delay-integro-differential equation with a singular perturbation parameter ε is considered. The problem is discretized using exponentially fitted schemes on the Shishkin type meshes. It is proved that the numerical approximations generated by this method are O(N−2lnN) convergent in the discrete maximum norm, where N is the mesh parameter. Numerical results show a good agreement with the theoretical analysis.