Detection and Classification of Different Weapon Types Using Deep Learning


Creative Commons License

Kaya V., Tuncer S., Baran A.

APPLIED SCIENCES-BASEL, cilt.11, sa.16, 2021 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 11 Sayı: 16
  • Basım Tarihi: 2021
  • Doi Numarası: 10.3390/app11167535
  • Dergi Adı: APPLIED SCIENCES-BASEL
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Aerospace Database, Agricultural & Environmental Science Database, Applied Science & Technology Source, Communication Abstracts, INSPEC, Metadex, Directory of Open Access Journals, Civil Engineering Abstracts
  • Anahtar Kelimeler: deep learning, convolutional neural network, VGGNet, ResNet, weapon detection, HANDGUN DETECTION, VIDEOS
  • Erzincan Binali Yıldırım Üniversitesi Adresli: Evet

Özet

Today, with the increasing number of criminal activities, automatic control systems are becoming the primary need for security forces. In this study, a new model is proposed to detect seven different weapon types using the deep learning method. This model offers a new approach to weapon classification based on the VGGNet architecture. The model is taught how to recognize assault rifles, bazookas, grenades, hunting rifles, knives, pistols, and revolvers. The proposed model is developed using the Keras library on the TensorFlow base. A new model is used to determine the method required to train, create layers, implement the training process, save training in the computer environment, determine the success rate of the training, and test the trained model. In order to train the model network proposed in this study, a new dataset consisting of seven different weapon types is constructed. Using this dataset, the proposed model is compared with the VGG-16, ResNet-50, and ResNet-101 models to determine which provides the best classification results. As a result of the comparison, the proposed model's success accuracy of 98.40% is shown to be higher than the VGG-16 model with 89.75% success accuracy, the ResNet-50 model with 93.70% success accuracy, and the ResNet-101 model with 83.33% success accuracy.