Extremophilic Solutions: The Role of Deinoxanthin in Counteracting UV-Induced Skin Harm


Creative Commons License

KUZUCU M.

Current Issues in Molecular Biology, cilt.45, sa.10, ss.8372-8394, 2023 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 45 Sayı: 10
  • Basım Tarihi: 2023
  • Doi Numarası: 10.3390/cimb45100528
  • Dergi Adı: Current Issues in Molecular Biology
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, CAB Abstracts, EMBASE, Food Science & Technology Abstracts, Veterinary Science Database, Directory of Open Access Journals
  • Sayfa Sayıları: ss.8372-8394
  • Anahtar Kelimeler: Deinococcus radiodurans, deinoxanthin, melanogenesis, UV-induced damage
  • Erzincan Binali Yıldırım Üniversitesi Adresli: Evet

Özet

This research delved into the protective capacities of deinoxanthin, a carotenoid present in Deinococcus radiodurans, against UVA- and UVB-mediated skin damage using human fibroblast foreskin cells (HFF-1). Using the MTT assay, HFF-1 cells treated with 10 µM DNX displayed 20% and 31.7% higher viability than the positive (Vitamin C-treated) and negative (DNX-untreated) control groups, respectively, upon 100 mJ/cm2 UVB exposure. At 24 J/cm2 UVA, 20 µM DNX-treated cells showed 80.6% viability, exceeding the positive and negative control groups by 28.6% and 33.6%, respectively. Flow cytometry analysis revealed that cells treated with DNX and exposed to 24 J/cm2 UVA exhibited a 69.32% reduction in apoptotic processes compared to untreated cells. Similarly, when exposed to 100 mJ/cm2 UVB, DNX-treated cells demonstrated a 72.35% decrease in apoptotic processes relative to their untreated counterparts. DNX also displayed dose-dependent inhibition on tyrosinase activity. The study emphasized DNX’s antioxidative capacity, evident in its modulation of superoxide dismutase activity and measurements of Malondialdehyde and intracellular reactive oxygen species levels. DNX-treated cells exhibited higher hydroxyproline levels, suggesting healthier collagen production. Additionally, the wound-healing assay method confirmed an accelerated healing rate in DNX-treated cells. Conclusively, DNX offers significant protection against UV-induced skin damage, emphasizing its potential for skincare and therapeutics.