Dual-functionality of Hibiscus sabdariffa-CuO nanoparticles in chemotherapy and textile screen-printing on cellulose-based textiles


TÜZÜN E., EROL A., Kalındemirtaş F. D., Özbaş F., Sert E., Soomro R. A., ...Daha Fazla

Cellulose, cilt.32, sa.4, ss.2471-2488, 2025 (SCI-Expanded, Scopus) identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 32 Sayı: 4
  • Basım Tarihi: 2025
  • Doi Numarası: 10.1007/s10570-025-06429-7
  • Dergi Adı: Cellulose
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, BIOSIS, Biotechnology Research Abstracts, CAB Abstracts, Compendex
  • Sayfa Sayıları: ss.2471-2488
  • Anahtar Kelimeler: Apoptosis, Cellulose-based textiles, Copper (II) oxide nanoparticles, MCF-7, Screen printing
  • Erzincan Binali Yıldırım Üniversitesi Adresli: Evet

Özet

The dual-functional nanostructures show great promise for biomedical applications, exhibiting selective cytotoxicity against cancer cells while also serving as a crucial component in textile screen-printing for smart materials. In this study, we successfully synthesized polyethylene glycol-hibiscus extract copper (II) oxide nanoparticles (PEG/HS/CuO NPs) using a simple one-step sonosynthesis method that leverages ultrasonic irradiation. Comprehensive characterization of the synthesized PEG/HS/CuO NPs was performed using transmission electron microscopy (TEM), X-ray diffraction (XRD), scanning electron microscopy (SEM) coupled with energy-dispersive X-ray (EDX) analysis, and Fourier-transform infrared spectroscopy (FTIR). The incorporation of PEG/HS/CuO NPs into guar gum photochromic solution (GP) caused a significant color change after 6 ± 1 min of UV light exposure and resulted in visible coloration on cellulose-based textiles after screen printing, providing an alternative strategy for smart fabrics. Moreover, cytotoxicity experiments demonstrated the selective toxicity of green PEG/HS/CuO NPs against cancer cells. In this study, the human colon cancer cell line HCT116, breast cancer cell line MCF-7, and normal HUVEC cells were examined. PEG/HS/CuO NPs NPs induced apoptosis, cell cycle arrest, and down-regulation of CD44 antibody expression in MCF-7 cells, highlighting their potential as effective chemotherapy agents.