Electroporation-Mediated GFP Gene Transfer into Model Organism Chlamydomonas reinhardtii


Can O., Kudug H., Pabuccu K., Gokce I.

KAHRAMANMARAS SUTCU IMAM UNIVERSITY JOURNAL OF NATURAL SCIENCES, cilt.20, ss.89-94, 2017 (ESCI) identifier

Özet

Over the last decade, microalgae has drawn attention as a natural source of valuable compounds and as bioreactors for recombinant protein production. Microalgae-based bioreactor is newly employed for production of safe and cost effective proteins. Especially, Chlamydomonas reinhardtii, an unicellular microalga, is the most prominent species which has a short generation time, fast growth rate, multiple genetic systems, and ability to perform posttranslational modifications machinery that plays a significant role in regulating the activity of complex proteins. In this research, the nuclear genome of the Chlamydomonas reinhardtii CC-125 strain was transformed by electroporation using construct plasmid pChlamy_3-GFP containing the gene coding for Green Fluorescent Protein (GFP) which is commonly used as an universal marker in biotechnological studies. Molecular and genetic analyses conducted on transformants revealed that the nuclear genome was stably transformed and the transgenes were integrated into the algal chromosomal DNA succesfully, albeit there was no distinct expression level of GFP gene in producing large amounts of protein. Codon optimization, choice of promoters, introns and UTRs, endogenous enhancer elements, regulatory mechanisms, localization of proteins, posttranslational modifications and protease activities are the possible underlying causes of the low expression level.