Photopolymerization and characterization of vinyl imidazole based allyl derivative polymers; Cr3+ and Cd2+ metal adsorption and antibacterial studies


Saltan F., Saltan G. M., İLKTAÇ R., ÖZDOKUR K. V.

Journal of Applied Polymer Science, 2024 (SCI-Expanded) identifier

  • Yayın Türü: Makale / Tam Makale
  • Basım Tarihi: 2024
  • Doi Numarası: 10.1002/app.55756
  • Dergi Adı: Journal of Applied Polymer Science
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, PASCAL, Aerospace Database, Applied Science & Technology Source, Biotechnology Research Abstracts, Chemical Abstracts Core, Chimica, Communication Abstracts, Compendex, INSPEC, Metadex, Civil Engineering Abstracts
  • Anahtar Kelimeler: adsorption, applications, copolymers, photopolymerization, synthesis and processing techniques
  • Erzincan Binali Yıldırım Üniversitesi Adresli: Evet

Özet

A new type polymeric adsorbent, poly(allylphenol-co-hydroxyethyl methacrylate-co-vinyl imidazole) (PAHV), is synthesized in this study. 2-Hydroxyethyl methacrylate is used as complementary monomers along with 1-vinyl imidazole and allylphenol monomers. The photopolymerization method is preferred as a synthesis method and benzophenone is used as the photoinitiator. The effectiveness of the PAHV against bacterial species such as Escherichia coli and Staphylococcus aureus is investigated by the Clinical and Laboratory Standards Institute (CLSI) disk diffusion method. The inhibition areas of PA1H1V3 and PA1H1V1 derivatives against E. coli and S. aureus are measured as 25 mm ± 0.25 mm and 7 mm ± 0.1 mm; 20 mm ± 0.25 mm, and 5 mm ± 0.1 mm, respectively. Sorption efficiencies (%) at pH = 6 (selected optimum pH) for 100 μg/L Cd and Cr of the PA1H1V1, PA1H3V1, and PA1H1V3 derivatives are found to be 69.0 ± 2.7 and 58.3 ± 6.7, 66.8 ± 6.2 and 75.8 ± 5.5, and 97.2 ± 3.7 and 97.7 ± 3.2 (n = 3), respectively. Adsorption studies revealed that the PA1H1V3 polymer can be used as an alternative for the sorption of cadmium and chromium. The pseudo-second-order model and Langmuir isotherm model fits for both adsorption processes. The adsorption capacities obtained from the Langmuir isotherm model for chromium and cadmium sorption are 52.63 and 68.49 μg g−1, respectively.