CMES - COMPUTER MODELING IN ENGINEERING AND SCIENCES, cilt.141, sa.1, ss.751-770, 2024 (SCI-Expanded)
In convolutional neural networks, pooling methods are used to reduce both the size of the data and the number of parameters after the convolution of the models. These methods reduce the computational amount of convolutional neural networks, making the neural network more efficient. Maximum pooling, average pooling, and minimum pooling methods are generally used in convolutional neural networks. However, these pooling methods are not suitable for all datasets used in neural network applications. In this study, a new pooling approach to the literature is proposed to increase the efficiency and success rates of convolutional neural networks. This method, which we call MAM (Maximum Average Minimum) pooling, is more interactive than other traditional maximum pooling, average pooling, and minimum pooling methods and reduces data loss by calculating the more appropriate pixel value. The proposed MAM pooling method increases the performance of the neural network by calculating the optimal value during the training of convolutional neural networks. To determine the success accuracy of the proposed MAM pooling method and compare it with other traditional pooling methods, training was carried out on the LeNet-5 model using CIFAR-10, CIFAR-100, and MNIST datasets. According to the results obtained, the proposed MAM pooling method performed better than the maximum pooling, average pooling, and minimum pooling methods in all pool sizes on three different datasets.