The effects of sugammadex on gastric ischemia-reperfusion injury in rats: Biochemical and histopathological evaluation


Koç A., Kuyrukluyildiz U., Gazi M., Caner Sayar A., Altuner D., Süleyman H., ...Daha Fazla

General physiology and biophysics, cilt.42, sa.1, ss.67-75, 2023 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 42 Sayı: 1
  • Basım Tarihi: 2023
  • Doi Numarası: 10.4149/gpb_2022049
  • Dergi Adı: General physiology and biophysics
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, BIOSIS, EMBASE
  • Sayfa Sayıları: ss.67-75
  • Erzincan Binali Yıldırım Üniversitesi Adresli: Evet

Özet

The primary sources of reactive oxygen species (ROS) that cause ischemia-reperfusion (I/R) injuries are enzymes xanthine oxidase (XO) and nicotinamide adenine dinucleotide phosphate oxidases (NOXs) in the literature, whereby one of the main ROS producing cells via NOX activity are polymophonuclear leukocytes (PNL). Sugammadex, the effect of which we plan to research against gastric I/R damage, is a modified gamma-cyclodextrin that antagonizes the action of steroidal neuromuscular blocking drugs. Previous studies have reported that sugammadex inhibits PNL infiltration. However, it is unknown whether an inhibitory effect on XO is present. We aimed to biochemically and histopathologically investigate the effects of sugammadex on I/R-induced stomach damage in rats. The animals were divided into groups that underwent gastric ischemia-reperfusion (GIR), 4 mg/kg sugammadex + gastric ischemia-reperfusion (SGIR), and a sham operation group (SG). The effect of sugammadex was evaluated by measuring oxidant-antioxidant and PNL parameters. There was no significant difference in XO levels between the SGIR and GIR groups. In the SGIR group, sugammadex inhibited the increase in myeloperoxidase (MPO) and malondialdehyde (MDA) levels (p < 0.001). The amount of MDA and MPO in the SGIR group was similar as in the SG group. Sugammadex significantly suppressed the decrease in tGSH levels in the SGIR group (p < 0.001). The difference between tGSH levels in the SG and SGIR groups was slight. In the SGIR group, sugammadex significantly suppressed the increase in tumor necrosis factor alpha (TNF-α) and interleukin 1 beta (IL1-β) levels compared to the GIR group (p < 0.001). Additionally, sugammadex corrected histopathological modifications as much as sham group. In conclusion, sugammadex may be beneficial in preventing oxidative stress.