Biological evaluation and in silico study of benzohydrazide derivatives as paraoxonase 1 inhibitors


Korkmaz I. N., TÜRKEŞ C., Demir Y., Öztekin A., ÖZDEMİR H., BEYDEMİR Ş.

Journal of Biochemical and Molecular Toxicology, cilt.36, sa.11, 2022 (SCI-Expanded) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 36 Sayı: 11
  • Basım Tarihi: 2022
  • Doi Numarası: 10.1002/jbt.23180
  • Dergi Adı: Journal of Biochemical and Molecular Toxicology
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Applied Science & Technology Source, BIOSIS, Biotechnology Research Abstracts, Chemical Abstracts Core, EMBASE, Environment Index, Food Science & Technology Abstracts, MEDLINE
  • Anahtar Kelimeler: ADME-Tox, benzohydrazide, in silico study, molecular docking, paraoxonase
  • Erzincan Binali Yıldırım Üniversitesi Adresli: Evet

Özet

© 2022 Wiley Periodicals LLC.Serum paraoxonase 1 (PON1) is found in all mammalian species and is a calcium-dependent hydrolytic enzyme. PON1 hydrolyze several substrates, including carbonates, esters, and organophosphates. In the current study, we aimed to investigate the effect of the presynthesized benzohydrazide derivatives (1–9) on PON1 activity. Benzohydrazide compounds moderate inhibited PON1 with the half-maximal inhibitory concentration values ranging from 76.04 ± 13.51 to 221.70 ± 13.59 μM and KI values ranging from 38.75 ± 12.21 to 543.50 ± 69.76 μM. Compound 4 (2-amino-4-chlorobenzohydrazide) showed the best inhibition (KI = 38.75 ± 12.21 μM). Molecular docking and ADME-Tox studies of benzohydrazide derivatives were also carried out. In this context, we hope that the results obtained in this study contribute to the determination of the side effects of current and new benzohydrazide-based pharmacological compounds to be developed.