Ophthalmic drugs: in vitro paraoxonase 1 inhibition and molecular docking studies


Çalışkan B., Demir Y., Türkeş C.

Biotechnology and Applied Biochemistry, cilt.69, sa.6, ss.2273-2283, 2022 (SCI-Expanded) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 69 Sayı: 6
  • Basım Tarihi: 2022
  • Doi Numarası: 10.1002/bab.2284
  • Dergi Adı: Biotechnology and Applied Biochemistry
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, Applied Science & Technology Source, BIOSIS, Biotechnology Research Abstracts, CAB Abstracts, Chemical Abstracts Core, Compendex, Computer & Applied Sciences, EMBASE, Environment Index, Food Science & Technology Abstracts, INSPEC, MEDLINE, Veterinary Science Database
  • Sayfa Sayıları: ss.2273-2283
  • Anahtar Kelimeler: allergic conjunctivitis, biological activity, enzyme inhibition, glaucoma, paraoxonase
  • Erzincan Binali Yıldırım Üniversitesi Adresli: Evet

Özet

© 2021 International Union of Biochemistry and Molecular Biology, Inc.Glaucoma is a neuropathy disorder and is generally treated by drugs. Allergic conjunctivitis is a common ophthalmologic disease. Paraoxonase 1 (PON1) is an organophosphate hydrolyzer and antiatherogenic enzyme. PON1 is known for preventing atherosclerosis through lipid-modifying features, as well as which has decisive actions of antiapoptosis, anti-inflammatory, antithrombosis, and antiadhesion antioxidant activity properties. Thus, reducing the enzyme levels in hyperthyroidism, chronic renal failure, glaucoma, diabetes mellitus, and cardiovascular diseases is a significant risk. This study was tested some ophthalmic drugs used to treat the diseases, such as glaucoma and allergic conjunctivitis, mentioned above, travoprost, latanoprost, ketotifen, emedastine, and olopatadine, for their inhibition activities against PON1. These drugs displayed the potent inhibition effect with IC50 values ranging between 14.95 ± 0.15 and 299.60 ± 4.07 μM and KI constants ranging from 9.71 ± 2.63 to 261.50 ± 59.98 μM. Besides, the molecular docking analyses of the competitive inhibitors, travoprost, emedastine, and olopatadine, were performed to understand the binding interactions on the enzyme's binding site. According to both in vitro and in silico analysis results, travoprost had the most potent effect on PON1 enzyme activity.