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Abstract— Artificial intelligence technology is becoming more 

active in all areas of our lives day by day. This technology affects 

our daily life by more developing in areas such as industry 4.0, 

security and education. Deep reinforcement learning is one of the 

most developed algorithms in the field of artificial intelligence. In 

this study, it is aimed that three different robots in a limited area 

learn to move without hitting each other, fixed obstacles and the 

boundaries of the field. These robots have been trained using the 

deep reinforcement learning approach and Proximal policy 

optimization (PPO) policy. Instead of uses value-based methods 

with the discrete action space, PPO that can easily manipulate the 

continuous action field and successfully determine the action of the 

robots has been proposed. PPO policy achieves successful results 

in multi-agent problems, especially with the use of the Actor-Critic 

network. In addition, information is given about environment 

control and learning approaches for swarm behavior. We propose 

parameter sharing and behavior-based method for this study. 

Finally, trained model is recorded and tested in 9 different 

environments where the obstacles are located differently. With our 

method, robots can perform their tasks in closed environments in 

the real world without damaging anyone or anything. 

Keywords—deep reinforcement learning, swarm behavior, deep 

learning 

I. INTRODUCTION 

When we examine nature, it is seen that there are many 
examples where the effort of a colony of limited individuals has 
achieved success above individual abilities. When ants are in a 
swarm, they carry food that a single ant cannot carry, termites 
build nests up to nine meters high, bees can regulate the 
temperature inside the hive. Birds use each other's formed air 
tunnels to fly further. The common point of all these actions is 
that their capacities have only standard and basic needs 
perceived and limited communication skills when examined 
individually [1].  

To summarize briefly the benefits of swarm intelligence is 
shown in Fig.1: 

• Derivatives free optimization; solutions to existing 
problems have not been previously defined. Solutions 
arise instantly. 

• Robustness; Tasks are completed even if some agents in 
the swarm fail. 

• Adaptation; the swarm system can also adapt to stimuli 
that may occur later. 

• Flexibility; the swarm is responded to internal 
disturbances and external challenges. 

• Low total cost; the costs to the target are minimized as 
much as possible. 

 Environment control and learning approaches are of great 
importance in swarm organizations. In this system, it is generally 
adopted that agents act consistently without hitting each other. 
There are three different formation control and three different 
learning approach strategies with different advantages in the 
literature. It is aimed for robots to train a single policy during the 
training phase and to perform their actions independently from 
other robots. Therefore, parameter sharing is proposed as a 
learning approach. Furthermore, behavior-based approach is 
adopted as environment control to facilitate individual 
movement of robots within the swarm. These two strategies are 
explained in the second part. 

This article presents a study about training swarm robots 
using deep reinforcement learning algorithms. Convolutional 
Neural Network (CNN) [2] algorithm is used in the deep 
reinforcement learning framework. In addition, the Proksimal 
Policy Optimization (PPO) [3] policy is trained in two different 
models using Actor-Critic architecture. PPO is a model-free, on-
policy, gradient-based reinforcement learning method. 

Looking at the literature, in the study of Kakish Z. et al. [4], 
which adopts the leader tracking organization with the 
reinforced learning approach, Q-learning and SARSA, which 
are two different Temporal-Difference learning algorithms, 
were used. Through these algorithms, a leader control tracking 
approach based on the lead agent's position in the environment 
is presented for populations of 10 to 100 follower agents. In 
another similar study, Xuejing Lan et al. [5] discuss the problem 
of collaborative leader follow-up control with a reinforcement 
learning approach. It is aimed that the swarm members in the 
environment move along the route determined by a virtual 

Fig. 1. Benefits of swarm intelligence 



   

dynamic agent. Furthermore, a study in which biological swarm 
behaviors were developed using the calculation algorithm [6] , 
and studies [7] proposing a new state representation for the 
multi-agent DRL approach were conducted. A study on decision 
making strategy for autonomous vehicles using deep 
reinforcement learning method enhanced with proximal policy 
optimization is presented by Teng Liu et al [8].  

The rest of the work is organized as follows: In the second 
chapter, we provide information about learning approaches for 
multi-agent systems, environment control, and details of the 
DRL approach we use in our study. In the third section, the 
presented working environment and parametric adjustments are 
explained. In the fourth chapter, simulation and test results are 
given with graphics. Finally, in the fifth chapter, the results of 
the study are discussed. 

II. DEEP REINFORCEMENT LEARNING FOR MULTIPLE 

ROBOT SYSTEMS 

In this section, learning approaches and environment controls 
offered for swarm problems with deep reinforcement learning 
algorithms are explained.  

A. Environment Control 

Environment control is introduced in the literature in three 
different ways. These are Leader tracking, Behavior-based and 
virtual structures [9]. 

Leader Tracking configures robots in the swarm in two 
ways. It consists of a leader robot and its followers. It shares the 
actions that go to the target in the environment with other 
followers through the leader robot. In this way, the swarm 
moves towards the target. 

In behavior-based environment control, each robot performs 
its own unique action. Their experiences are used to learn these 
actions. Thus, the robots in the environment learn not to hit each 
other. 

Virtual structures are the situations where all robots act as a 
single structure. The swarm's intelligence and actions are poor, 
as the system acts as a single structure. 

B. Learning Approaches 

There are three different learning approaches: central 
learning, simultaneous learning and parameter sharing [10]. 

Central learning approach is an approach in which all robots 
in the environment are trained by a single model. The trained 
policy determines a joint action by evaluating the action 
experiences from all robots. 

In simultaneous learning; each robot is responsible for 
learning its own policy. Therefore, each robot performs its own 
action. Thus, more than one policy can be trained at the same 
time. 

In parameter sharing; a single policy is trained by the swarm. 
However, each robot chooses its own action. Thus, the policy 
can be trained faster. 

In this study, we present behavior-based control as 
environment control and parameter sharing as learning 
approach. 

C. Deep Reinforcement Learning 

Machine learning is a field of artificial intelligence that 
provides automated methods using patterns in data. We can talk 
about three different types of machine learning. Supervised 
learning; draws a conclusion using the tagged education data 
[11]. 

Unsupervised learning; draws conclusions from data sets 
consisting of input data without labeled data [12]. 

Reinforcement learning; It is a learning method that uses the 
reward-penalty system to maximize total rewards without the 
need for any preliminary data [13]. 

Deep learning is based on the function f ∶ X → Y 
parameterized by (1). 

��ℝ���	� ∈ ℕ�: � = ���; ��                    (1) 

A deep neural network is formed by the combination of 
many consecutive layers. Each layer consists of a nonlinear 
structure. These layers consist of input layer, convolution layer 
and output layer. Reinforcement learning(RL) [14] is the 
formation of an action with the experience an agent gained from 
the reward and penalty that receives in an educational 
environment. At each step, the agent determines a state from the 
current state (St) of environment E from all possible sets of 
states (S) and selects an action from all possible sets of actions 
(a) depending on this state. One of the popular algorithms in 
reinforcement learning was the development of a non-policy 
Temporal-Different control algorithm known as Q-learning. 
Basically, one-stage Q-learning is defined as given by (2): 

��� , ��� ← ���� , ��� + �[  ���� +  !"�#������, "� −
 ���� , ���  ]                                      (2) 

��� , ��� → New value 

���� , ���→ Old value 

α→ Learning rate 

γ→ Discount factor 

��→ Reward 

!"�#������, "�� Estimate of optimal future value 

Reinforcement learning methods such as Q-learning are 
more reliable than stochastic algorithms because they reward 
the current action by receiving a reward for state transitions. 
Based on the Markov Decision Process (MDP) [15] theory, Q-
learning is an ideal method for solving the problems of 
representative actions under different complex conditions. The 
table matrix (Q-Table) used in Q-learning reaches a very large 
size with the increase of state and motion values [16]. 

Deep reinforcement learning (DRL) [17] solves the problem 
that occurs due to the large size of the state and action values 
with the help of neural networks. In this way, DRL has achieved 
outstanding success in games such as GO [18]. DRL 
architecture is given by Fig. 2.  

 



   

D. Proximal Policy Optimization 

PPO [3] is a model-free, on-policy, gradient-based 
reinforcement learning method. This method is a kind of policy 
gradient training ranging from sampling data through 
environmental interaction and optimizing a piece of objective 
function using stochastic gradient descent. The objective 
function improves the stability of education by limiting the 
extent of policy change at each step [3]. Agents using the PPO 
algorithm can be trained in discrete or continuous environments 
of observation and action [19]. 

In the training phase of the PPO agent: 

• Estimates the probabilities of occurrence for each action 
in the area where the action takes place and randomly 
selects the actions according to these probability values. 
 

• Interacts with the environment using the current policy 
before using mini-batch to update actor-critic 
parameters. 

 It adopts two main functions to calculate the policy and 
value function of PPO agent [20]. Interaction of agent-
environment in DRL is given by Fig. 3.  

Actor μ(S) - The actor takes observation S and returns the 
probabilities of taking each action in the action space when in 
state S. 

Critic V(S) - Critic takes observation S and returns the 
expectation corresponding to discounted long-term reward. 

III. SIMULATION ENVIRONMENT AND PARAMETER 

SETTINGS 

The swarm was trained with a deep reinforcement learning 
algorithm using the PPO policy. However, each robot 
determines its own action. Training was carried out in an 
environment of 20x20 units where have fixed obstacles. As 
shown in fig. 4, there are three robots represented by circles in 
the training environment. 

During the training phase, the robots determine the action by 
the actor-critic neural network. The actor determines the action 
the robot will take by evaluating the data from the environment 
with the recommendation of critic network.  

Robots were trained for 1500 episodes. Each episode 
consists of 500 steps. Robots have to perform one of 5 different 
actions during training. These are; wait, right, left, up, down. A 
training segment ends when the entire area is discovered by 
robots or when the step count is completed. 

The reward-penalty system is applied as written below in 
each training step for robots. 

• +1 point for scanning a previously undiscovered cell, 

• -0.5 points for each illegal action (attempting to go out 
of bounds or hit other robots and obstacles), 

• -0.05 points for each action that results in a move, 

• -0.1 point for each action that does not result in a 
movement, 

• +200 points for each robot during the episode if the 
training area is fully scanned 

During the training, agents collect experiences until they 
reach the experience horizon 128-steps and then complete their 
training from mini-batches of 64 experiences. An objective 
function clip factor of 0.2 improves training stability. Long-term 
rewards are encouraged with a discount factor value of 0.99. 

As shown in Fig. 4, there are three robots represented by 
circles in the training environment. Robots are represented by 
red, blue and green circles. Each robot paints the area it covers 
in its own color. The black colored squares represent the 
obstacles in the environment. 

IV. SIMULATION AND TEST RESULTS 

 After the training, robots are tested in 9 different 
environments with the saved model. 9 different test 
environments are given in fig 5. Test results are given in table 
1. However, table 1 only shows the test results for 7 
environments. 

 

 

 

 

Fig. 3. Interaction of agent-environment in DRL 

Fig. 4. Training environment 

Fig. 2. Structure of deep reinforcement learning 



   

It has been tested in different environments to evaluate the 
success of the pre-trained model. 

 

As shown in Fig.6, the robot led by agent A has drawn a 
steady reward-episode plot. During the training, the average 
reward is -46.21. After the first 500 steps, it is seen that the robot 

started to get to know the environment and how to get the most 
points from the episodes consistently. 

Graph of agent B is shown Fig.7. When the graph is 
examined, it is seen that it constantly scanning the area after the 
600th episode. Additionally, although there is a decrease in the 
average reward in the last 150 steps, it manages to compensate 
for this decrease towards the end of the training. The average 
reward that robot B received during the training is recorded as -
19.57. 

Fig.8 shows the training graph of agent C. When the graph 
is examined, agent C shows a less stable trend than the other 
two agents. Although it has achieved stability in the last 200 
steps, it has not been successful in the previous episodes of the 
education. The average reward received by robot C during the 
training is -55.72. 

Fig.9 shows the graph of how much of the available 
environment is completed by three robots. When the graph is 
examined, it is seen that the environment is completed 
approximately 10 times in the range of 80-100%. This number 
is directly related to the step number parameter in each episode 
being 500. Increasing this parameter may increase the scanned 
area surface, but the total rewards robots receive will decrease. 
When the last 100 steps are examined, it is noticed that the 
completion percentages approach to 80. 

The red line shown in Fig. 6, 7, and 8 indicates the average 
total reward the robot has received in each episode. Blue points 
indicate the reward received in each episode. 

The pre-trained model has been tested in 9 different 
environments with 500 steps each. Additionally, the completion 
percentages for each episode are shown. Obstacles in the test 
environment were determined randomly. According to table 1, 
the most successful completion percentage by robots is 
environment number 1. 

TABLE 1. TEST VALUES PERFORMED IN DIFFERENT ENVIRONMENTS 

USING A PRE-TRAINED MODEL 

    Env 

Agent 1 2 3 4 5 6 7 

A 6,10 8,90 1,25 8,05 12,7 14,7 7,15 

B -1,25 16,1 5,35 -7,2 -38 -4,8 6,35 

C 16,8 8,95 8,35 12,8 0,35 10,1 9,05 

Completed 

(%) 91,5 90,6 84 77,3 75,4 84,7 83,2 

 

Fig.10 shows the graph of the data in table 1. The yellow 
line shown in Fig. 10 shows the percentage of completion for 
each environment. The blue line indicates the total reward that 
robot A received. The red line indicates the total reward robot B 
has received. The gray line indicates the total reward the C robot 
has received. 

 

 

Fig. 6. Training graph of agent A(x axis=episode number, y axis= episode reward) 

Fig. 7. Training graph of agent B(x axis=episode number, y axis= episode reward) 

Fig. 8. Training graph of agent C (x axis=episode number, y axis= episode reward) 

Fig. 9. Completion percentages of training environment (x axis=percentage, y 
axis= episode) 

Fig. 5. 9 different environments used for testing 



   

V. CONCLUSION 

In the age of technology, robots now find their place in many 
areas of our lives. Reinforcement learning is widely used in 
robotics to learn complex behaviors. However, many real world 
applications have multi-dimensional action areas where 
individual actions work together to make the robot perform a 
desired task. 

In this study, the training problem of swarm robots in a 
limited area is discussed. In the solution of the problem, deep 
reinforcement learning algorithm is trained using PPO policy 
and Actor-Critic model. At the end of 1500 episodes, it is 
concluded that three robots successfully learned the 
environment and tried to get the maximum score. The use of 
CNN artificial neural network in both actor and critic network 
plays an important role in the success of training. When the 
episode-reward graph of all three robots is examined, it is seen 
that they have completed the training proportionally and 
consistently. If one robot had received too many consecutive 
rewards, at least one of the other robots would fail to train. So, 
it can be said that the education was successful. 

The average completion percentage of the test results in 9 
different environments is 83.08%. This percentage can be 
improved with different parameters and by applying different 
policies. In addition, test results differ according to the location 
of the obstacles in the test environments and the area they cover. 

Finally, the results on the testing data verify the PPO agent 
can adapt to different environment scenarios. 
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Fig.10. Test results in different environments using a pre-trained model


