
Proximal Policy Based Deep Reinforcement Learning
Approach for Swarm Robots

Ziya TAN

Erzincan Binali Yıldırım University

Erzincan, Turkey

ziyatan@erzincan.edu.tr

Mehmet KARAKÖSE

Department of Computer Engineering

Firat University

Elazığ, Turkey

mkarakose@firat.edu.tr

Abstract— Artificial intelligence technology is becoming more

active in all areas of our lives day by day. This technology affects

our daily life by more developing in areas such as industry 4.0,

security and education. Deep reinforcement learning is one of the

most developed algorithms in the field of artificial intelligence. In

this study, it is aimed that three different robots in a limited area

learn to move without hitting each other, fixed obstacles and the

boundaries of the field. These robots have been trained using the

deep reinforcement learning approach and Proximal policy

optimization (PPO) policy. Instead of uses value-based methods

with the discrete action space, PPO that can easily manipulate the

continuous action field and successfully determine the action of the

robots has been proposed. PPO policy achieves successful results

in multi-agent problems, especially with the use of the Actor-Critic

network. In addition, information is given about environment

control and learning approaches for swarm behavior. We propose

parameter sharing and behavior-based method for this study.

Finally, trained model is recorded and tested in 9 different

environments where the obstacles are located differently. With our

method, robots can perform their tasks in closed environments in

the real world without damaging anyone or anything.

Keywords—deep reinforcement learning, swarm behavior, deep

learning

I. INTRODUCTION

When we examine nature, it is seen that there are many
examples where the effort of a colony of limited individuals has
achieved success above individual abilities. When ants are in a
swarm, they carry food that a single ant cannot carry, termites
build nests up to nine meters high, bees can regulate the
temperature inside the hive. Birds use each other's formed air
tunnels to fly further. The common point of all these actions is
that their capacities have only standard and basic needs
perceived and limited communication skills when examined
individually [1].

To summarize briefly the benefits of swarm intelligence is
shown in Fig.1:

• Derivatives free optimization; solutions to existing
problems have not been previously defined. Solutions
arise instantly.

• Robustness; Tasks are completed even if some agents in
the swarm fail.

• Adaptation; the swarm system can also adapt to stimuli
that may occur later.

• Flexibility; the swarm is responded to internal
disturbances and external challenges.

• Low total cost; the costs to the target are minimized as
much as possible.

 Environment control and learning approaches are of great
importance in swarm organizations. In this system, it is generally
adopted that agents act consistently without hitting each other.
There are three different formation control and three different
learning approach strategies with different advantages in the
literature. It is aimed for robots to train a single policy during the
training phase and to perform their actions independently from
other robots. Therefore, parameter sharing is proposed as a
learning approach. Furthermore, behavior-based approach is
adopted as environment control to facilitate individual
movement of robots within the swarm. These two strategies are
explained in the second part.

This article presents a study about training swarm robots
using deep reinforcement learning algorithms. Convolutional
Neural Network (CNN) [2] algorithm is used in the deep
reinforcement learning framework. In addition, the Proksimal
Policy Optimization (PPO) [3] policy is trained in two different
models using Actor-Critic architecture. PPO is a model-free, on-
policy, gradient-based reinforcement learning method.

Looking at the literature, in the study of Kakish Z. et al. [4],
which adopts the leader tracking organization with the
reinforced learning approach, Q-learning and SARSA, which
are two different Temporal-Difference learning algorithms,
were used. Through these algorithms, a leader control tracking
approach based on the lead agent's position in the environment
is presented for populations of 10 to 100 follower agents. In
another similar study, Xuejing Lan et al. [5] discuss the problem
of collaborative leader follow-up control with a reinforcement
learning approach. It is aimed that the swarm members in the
environment move along the route determined by a virtual

Fig. 1. Benefits of swarm intelligence

dynamic agent. Furthermore, a study in which biological swarm
behaviors were developed using the calculation algorithm [6] ,
and studies [7] proposing a new state representation for the
multi-agent DRL approach were conducted. A study on decision
making strategy for autonomous vehicles using deep
reinforcement learning method enhanced with proximal policy
optimization is presented by Teng Liu et al [8].

The rest of the work is organized as follows: In the second
chapter, we provide information about learning approaches for
multi-agent systems, environment control, and details of the
DRL approach we use in our study. In the third section, the
presented working environment and parametric adjustments are
explained. In the fourth chapter, simulation and test results are
given with graphics. Finally, in the fifth chapter, the results of
the study are discussed.

II. DEEP REINFORCEMENT LEARNING FOR MULTIPLE

ROBOT SYSTEMS

In this section, learning approaches and environment controls
offered for swarm problems with deep reinforcement learning
algorithms are explained.

A. Environment Control

Environment control is introduced in the literature in three
different ways. These are Leader tracking, Behavior-based and
virtual structures [9].

Leader Tracking configures robots in the swarm in two
ways. It consists of a leader robot and its followers. It shares the
actions that go to the target in the environment with other
followers through the leader robot. In this way, the swarm
moves towards the target.

In behavior-based environment control, each robot performs
its own unique action. Their experiences are used to learn these
actions. Thus, the robots in the environment learn not to hit each
other.

Virtual structures are the situations where all robots act as a
single structure. The swarm's intelligence and actions are poor,
as the system acts as a single structure.

B. Learning Approaches

There are three different learning approaches: central
learning, simultaneous learning and parameter sharing [10].

Central learning approach is an approach in which all robots
in the environment are trained by a single model. The trained
policy determines a joint action by evaluating the action
experiences from all robots.

In simultaneous learning; each robot is responsible for
learning its own policy. Therefore, each robot performs its own
action. Thus, more than one policy can be trained at the same
time.

In parameter sharing; a single policy is trained by the swarm.
However, each robot chooses its own action. Thus, the policy
can be trained faster.

In this study, we present behavior-based control as
environment control and parameter sharing as learning
approach.

C. Deep Reinforcement Learning

Machine learning is a field of artificial intelligence that
provides automated methods using patterns in data. We can talk
about three different types of machine learning. Supervised
learning; draws a conclusion using the tagged education data
[11].

Unsupervised learning; draws conclusions from data sets
consisting of input data without labeled data [12].

Reinforcement learning; It is a learning method that uses the
reward-penalty system to maximize total rewards without the
need for any preliminary data [13].

Deep learning is based on the function f ∶ X → Y
parameterized by (1).

��ℝ���	� ∈ ℕ�: � = ���; �� (1)

A deep neural network is formed by the combination of
many consecutive layers. Each layer consists of a nonlinear
structure. These layers consist of input layer, convolution layer
and output layer. Reinforcement learning(RL) [14] is the
formation of an action with the experience an agent gained from
the reward and penalty that receives in an educational
environment. At each step, the agent determines a state from the
current state (St) of environment E from all possible sets of
states (S) and selects an action from all possible sets of actions
(a) depending on this state. One of the popular algorithms in
reinforcement learning was the development of a non-policy
Temporal-Different control algorithm known as Q-learning.
Basically, one-stage Q-learning is defined as given by (2):

��� , ��� ← ���� , ��� + �[���� + !"�#������, "� −
 ���� , ���] (2)

��� , ��� → New value

���� , ���→ Old value

α→ Learning rate

γ→ Discount factor

��→ Reward

!"�#������, "�� Estimate of optimal future value

Reinforcement learning methods such as Q-learning are
more reliable than stochastic algorithms because they reward
the current action by receiving a reward for state transitions.
Based on the Markov Decision Process (MDP) [15] theory, Q-
learning is an ideal method for solving the problems of
representative actions under different complex conditions. The
table matrix (Q-Table) used in Q-learning reaches a very large
size with the increase of state and motion values [16].

Deep reinforcement learning (DRL) [17] solves the problem
that occurs due to the large size of the state and action values
with the help of neural networks. In this way, DRL has achieved
outstanding success in games such as GO [18]. DRL
architecture is given by Fig. 2.

D. Proximal Policy Optimization

PPO [3] is a model-free, on-policy, gradient-based
reinforcement learning method. This method is a kind of policy
gradient training ranging from sampling data through
environmental interaction and optimizing a piece of objective
function using stochastic gradient descent. The objective
function improves the stability of education by limiting the
extent of policy change at each step [3]. Agents using the PPO
algorithm can be trained in discrete or continuous environments
of observation and action [19].

In the training phase of the PPO agent:

• Estimates the probabilities of occurrence for each action
in the area where the action takes place and randomly
selects the actions according to these probability values.

• Interacts with the environment using the current policy
before using mini-batch to update actor-critic
parameters.

 It adopts two main functions to calculate the policy and
value function of PPO agent [20]. Interaction of agent-
environment in DRL is given by Fig. 3.

Actor μ(S) - The actor takes observation S and returns the
probabilities of taking each action in the action space when in
state S.

Critic V(S) - Critic takes observation S and returns the
expectation corresponding to discounted long-term reward.

III. SIMULATION ENVIRONMENT AND PARAMETER

SETTINGS

The swarm was trained with a deep reinforcement learning
algorithm using the PPO policy. However, each robot
determines its own action. Training was carried out in an
environment of 20x20 units where have fixed obstacles. As
shown in fig. 4, there are three robots represented by circles in
the training environment.

During the training phase, the robots determine the action by
the actor-critic neural network. The actor determines the action
the robot will take by evaluating the data from the environment
with the recommendation of critic network.

Robots were trained for 1500 episodes. Each episode
consists of 500 steps. Robots have to perform one of 5 different
actions during training. These are; wait, right, left, up, down. A
training segment ends when the entire area is discovered by
robots or when the step count is completed.

The reward-penalty system is applied as written below in
each training step for robots.

• +1 point for scanning a previously undiscovered cell,

• -0.5 points for each illegal action (attempting to go out
of bounds or hit other robots and obstacles),

• -0.05 points for each action that results in a move,

• -0.1 point for each action that does not result in a
movement,

• +200 points for each robot during the episode if the
training area is fully scanned

During the training, agents collect experiences until they
reach the experience horizon 128-steps and then complete their
training from mini-batches of 64 experiences. An objective
function clip factor of 0.2 improves training stability. Long-term
rewards are encouraged with a discount factor value of 0.99.

As shown in Fig. 4, there are three robots represented by
circles in the training environment. Robots are represented by
red, blue and green circles. Each robot paints the area it covers
in its own color. The black colored squares represent the
obstacles in the environment.

IV. SIMULATION AND TEST RESULTS

 After the training, robots are tested in 9 different
environments with the saved model. 9 different test
environments are given in fig 5. Test results are given in table
1. However, table 1 only shows the test results for 7
environments.

Fig. 3. Interaction of agent-environment in DRL

Fig. 4. Training environment

Fig. 2. Structure of deep reinforcement learning

It has been tested in different environments to evaluate the
success of the pre-trained model.

As shown in Fig.6, the robot led by agent A has drawn a
steady reward-episode plot. During the training, the average
reward is -46.21. After the first 500 steps, it is seen that the robot

started to get to know the environment and how to get the most
points from the episodes consistently.

Graph of agent B is shown Fig.7. When the graph is
examined, it is seen that it constantly scanning the area after the
600th episode. Additionally, although there is a decrease in the
average reward in the last 150 steps, it manages to compensate
for this decrease towards the end of the training. The average
reward that robot B received during the training is recorded as -
19.57.

Fig.8 shows the training graph of agent C. When the graph
is examined, agent C shows a less stable trend than the other
two agents. Although it has achieved stability in the last 200
steps, it has not been successful in the previous episodes of the
education. The average reward received by robot C during the
training is -55.72.

Fig.9 shows the graph of how much of the available
environment is completed by three robots. When the graph is
examined, it is seen that the environment is completed
approximately 10 times in the range of 80-100%. This number
is directly related to the step number parameter in each episode
being 500. Increasing this parameter may increase the scanned
area surface, but the total rewards robots receive will decrease.
When the last 100 steps are examined, it is noticed that the
completion percentages approach to 80.

The red line shown in Fig. 6, 7, and 8 indicates the average
total reward the robot has received in each episode. Blue points
indicate the reward received in each episode.

The pre-trained model has been tested in 9 different
environments with 500 steps each. Additionally, the completion
percentages for each episode are shown. Obstacles in the test
environment were determined randomly. According to table 1,
the most successful completion percentage by robots is
environment number 1.

TABLE 1. TEST VALUES PERFORMED IN DIFFERENT ENVIRONMENTS

USING A PRE-TRAINED MODEL

 Env

Agent 1 2 3 4 5 6 7

A 6,10 8,90 1,25 8,05 12,7 14,7 7,15

B -1,25 16,1 5,35 -7,2 -38 -4,8 6,35

C 16,8 8,95 8,35 12,8 0,35 10,1 9,05

Completed

(%) 91,5 90,6 84 77,3 75,4 84,7 83,2

Fig.10 shows the graph of the data in table 1. The yellow
line shown in Fig. 10 shows the percentage of completion for
each environment. The blue line indicates the total reward that
robot A received. The red line indicates the total reward robot B
has received. The gray line indicates the total reward the C robot
has received.

Fig. 6. Training graph of agent A(x axis=episode number, y axis= episode reward)

Fig. 7. Training graph of agent B(x axis=episode number, y axis= episode reward)

Fig. 8. Training graph of agent C (x axis=episode number, y axis= episode reward)

Fig. 9. Completion percentages of training environment (x axis=percentage, y
axis= episode)

Fig. 5. 9 different environments used for testing

V. CONCLUSION

In the age of technology, robots now find their place in many
areas of our lives. Reinforcement learning is widely used in
robotics to learn complex behaviors. However, many real world
applications have multi-dimensional action areas where
individual actions work together to make the robot perform a
desired task.

In this study, the training problem of swarm robots in a
limited area is discussed. In the solution of the problem, deep
reinforcement learning algorithm is trained using PPO policy
and Actor-Critic model. At the end of 1500 episodes, it is
concluded that three robots successfully learned the
environment and tried to get the maximum score. The use of
CNN artificial neural network in both actor and critic network
plays an important role in the success of training. When the
episode-reward graph of all three robots is examined, it is seen
that they have completed the training proportionally and
consistently. If one robot had received too many consecutive
rewards, at least one of the other robots would fail to train. So,
it can be said that the education was successful.

The average completion percentage of the test results in 9
different environments is 83.08%. This percentage can be
improved with different parameters and by applying different
policies. In addition, test results differ according to the location
of the obstacles in the test environments and the area they cover.

Finally, the results on the testing data verify the PPO agent
can adapt to different environment scenarios.

REFERENCES

[1] J. Harvey, "The Blessing and Curse of Emergence in Swarm
Intelligence Systems," Foundations of Trusted Autonomy, vol. 117, no.
3, pp. 117-124, 2018.

[2] L. Yandong, H. Zongbo and L. Hang, "Survey of convolutional neural
network," Journal of Computer Applications, vol. 36, no. 9, pp. 2508-
2515, 2016.

[3] J. Schulman, F. Wolski, P. Dhariwal, A. Radford and O. Klimov,
"Proximal Policy Optimization Algorithms," arXiv:1707.06347
[cs.LG], 2017.

[4] Z. Kakish, K. Elamvazhuthi and S. Berman, "Using Reinforcement
Learning to Herd a Robotic Swarm to a Target Distribution," in IEEE
Robotics and Automation Letters 2020, 2020.

[5] X. Lan, Y. Liu and Z. Zhao, "Cooperative control for swarming systems
based on reinforcement learning in unknown dynamic environment,"
Neurocomputing, vol. 410, pp. 410-418, 2020.

[6] R. S. Parpinelli and H. Lopes, "New inspirations in swarm intelligence:
a survey," International Journal of Bio-Inspired Computation, vol. 3,
no. 1, pp. 1-16, 2011.

[7] M. Hüttenrauch, A. Šošic and G. Neumann, "Deep Reinforcement
Learning for Swarm Systems," Journal of Machine Learning Research,
pp. 1-31, 2019.

[8] T. Liu, H. Wang, B. Lu, J. Li and D. Cao, "Decision-making for
Autonomous Vehicles on Highway: Deep Reinforcement Learning with
Continuous Action Horizon," arXiv preprint arXiv:2008.11852., 2020.

[9] M. Ji and M. Egerstedt, "Distributed Coordination Control of Multiagent
Systems While Preserving Connectedness," IEEE Transactions on
Robotics, vol. 23, no. 4, pp. 693-703, 2007.

[10] R. Johns., Intelligent formation control using deep reinforcement
learning, 2018.

[11] X.-D. Zhang, "Machine learning," A Matrix Algebra Approach to
Artificial Intelligence, pp. 223-440, 2020.

[12] Y. LeCun, Y. Bengio and G. Hinton, "Deep Learning," Review, no. 521,
p. 436, 2015.

[13] Z. Tan and M. Karaköse, "Comparative Study for Deep Reinforcement
Learning with CNN, RNN, and LSTM in Autonomous Navigation,"
2020 International Conference on Data Analytics for Business and
Industry: Way Towards a Sustainable Economy (ICDABI), 2020.

[14] W. Liang, W. Huang, J. Long, K. Zhang, K.-C. Li and D. Zhang, "Deep
Reinforcement Learning for Resource Protection and Real-Time
Detection in IoT Environment," IEEE Internet of Things Journal, vol. 7,
no. 7, pp. 6392 - 6401, 2020.

[15] W. Huang and W. B. Haskell, "Risk-aware Q-learning for Markov
decision processes," 2017 IEEE 56th Annual Conference on Decision
and Control (CDC), 2017.

[16] N. Kantasewi, S. Marukatat, S. Thainimit and O. Manabu, "Multi Q-
Table Q-Learning," 2019 10th International Conference of Information
and Communication Technology for Embedded Systems (IC-ICTES),
2019.

[17] R. S. Sutton and A. G. Barto, Reinforcement Learning:An Introduction,
London: MIT Press, 2015.

[18] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D.
Wierstra and M. Riedmiller, "Playing atari with deep reinforcement
learning," arXiv:1312.5602, 2013.

[19] J. H. Tianpei Yang, Z. Meng, Z. Zhang, Y. Hu, Y. Cheng, C. Fan, W.
Wang, Z. W. Wulong Liu and J. Peng, "Efficient Deep Reinforcement
Learning via Adaptive Policy Transfer," arXiv preprint
arXiv:2002.08037, 2020.

[20] Z. Tan and M. Karaköse, "Optimized Deep Reinforcement Learning
Approach for Dynamic System," 2020 IEEE International Symposium
on Systems Engineering (ISSE), pp. 1-4, 2020.

Fig.10. Test results in different environments using a pre-trained model

